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�
The harmony of the world ismademanifest
in Form andNumber, and the heart and soul
and all the poetry ofNatural Philosophy

are embodied in the concept ofmathematical beauty.
-D’ArcyWentworthThompson,OnGrowth andForm

�
The mathematical object known as an attractor is central to the field of mathemat-

ics known as nonlinear dynamical systems theory (NDS), one of the indispensible con-
ceptual underpinnings of complexity science. To appreciate what an attractor is ac-
cordingly demands some familiarity with other NDS notions, namely, phase or state space,
phase portraits, basins of attraction, initial conditions, transients, bifurcations, chaos, and strange
attractors. These terms may seem imposingly technical at first but in effect they turn out
to be relatively simple in their proven capacity for taming some of the unruliness of com-
plex systems. If all we had available in understanding complex systems were theoreti-
cal constructs of the same or even greater complexity, we would be unable to make much
headway in either comprehending the dynamics of complexity or in utilizing what we
know.
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Most of us have by now at least some inkling of what “nonlinear” means. Mathemati-
cally, it refers to disproportional relationships among variables in equations and, ac-
cordingly, the systems represented by those equations and variables, for example, what
occurs whenever there is some kind of mutual interaction or feedback going on among
the variables. Perhaps, the most well-known and vivid example of this kind of nonlin-
ear disproportionality is the “butterfly effect” of a technically chaotic system that is so
nonlinear it has prompted the use of the image of tiny air currents produced by a but-
terfly flapping its wings in Brazil, which are then amplified to the extent they may in-
fluence the building-up of a thunderhead in Kansas. To be sure, no one has actually
claimed there is such a linkage between Brazilian lepidopterological dynamics and cli-
matology in theMidwest of the USAbut it does serve to vividly por-
tray nonlinearity in extremis.

A nonlinear dynamical system is one that unfolds in a law-like manner,
that is, one customarily distinguished from a totally random system
(although randomization can play a significant role in certain dy-
namical systems) but in which outcomes are nevertheless unpre-
dictable in important respects because of both the nonlinearity and
the capacity of such systems in passing through different regimes of
stability and instability. These different regimes of a dynamical sys-
tem are understood as different phases “governed” by a different at-
tractor(s). “Governed” is used here in a loose sense, the idea being
that the dynamics of each phase of a dynamical system are con-
strained within the circumscribed range allowable by that phase’s at-
tractor(s). It is not untypical to hear the term “attractor” being used
in the sense of possessing some sort of causal efficacy (a topic we’ll
get to later). In actuality, an attractor is an abstract mathematical representation and not
a cause per se “existing” in an abstract mathematical space termed “phase” or “state
space”, composed of the values of the variables of interests plotted against each other
and which may exhibit particular “phase portraits” that reveal important aspects of the
dynamics of such systems.

Time Series
To better grasp the idea of phase space, let’s contrast it with a different way of repre-
senting the change of a system over time: a time series chart that plots the changing val-
ues of the variable(s) on the y-(or z- or…) axis and time on the x-axis.Amidst the financial
crisis that came to a head at the end of 2008, we unfortunately became all too familiar
with the downward zigzagging of capital market time series charts. For example, here
is a dismal example of General Motors’ stock price on the y-axis over the period on the
x-axis, ending in November, 2008:
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Figure 1: General Motors Stock Prices for 12 months to Nov. 2008 (GM, No date).

From looking at this time series chart alone, we can appreciate why GM took so much
heat, particularly in the context of exorbitant bonuses and extravagant perks given over
this same time period. If this were the times series chart for, say, revenue of a small busi-
ness, it would presage bankruptcy, not extra income. However, if we compare this time
series for the year up to November 2008 with the recent IPO of GM, we can recognize
one of the limitations of using time series charts in reaching dogmatic conclusions.

Here is another example, this one of gold prices (considered a good investment by those
who tend not to trust anything unless it glitters in their hands. But alas, so does fool’s
gold!):

Figure 2: Gold Prices for aYear (Gold Prices, 2008).

To be sure, this time series chart does indicate that gold was a better investment for the
same year than GM stock for the same time period. However, juxtaposing the two times
series charts of Figures 1 and 2 points to another of the limitations of relying on time
series alone. Consider the following facts. In 1990 gold sold for $380 and Figure 2 shows
that gold was selling on Dec. 5th for about $760. This means that investors who bought
gold in 1990 just about doubled their investment in 18 years, a seemingly not too bad
200% increase. However, it is also true that the currently much bemoaned S&P index
was about $350 in 1990 and even after its devaluation due to the meltdown (no pun
intended) of 2008, was close to $900.Thus, an S&P index fund would show an increase
of $350 to $900 which translates into a 257% increase against a mere 200% increase in
gold. Besides the obvious conclusion that mixing political leanings with investing is a
fool’s errand, the comparison of Figures 1 and 2 reveals that times series are always of
a very limited time horizon and whatever trends are seen in some segment of that time
horizon do not necessarily translate to other segments of time or to longer series.

This limitation of time series is also demonstrated in Figure 3, a times series chart for
retail gasoline prices over the past eight years ending on Dec. 1, 2008.We see a zigzag-
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ging but overall strong increase for most of this chart, a literal “going through the roof,”
until suddenly, during the Fall of 2008, the “bottom dropped out” of the oil price boom
and accordingly, gasoline prices as well. But, this sudden and precipitous drop was
nowhere evident in the time series chart for the preceding eight years:

Figure 3: Price of Retail Gasoline per gallon since 2001 (MSNBC, 2008).

Despite such serious disadvantages, financial time series charts are carefully inspected
everyday by “technical analysis” in the attempt to predict the direction of their zigzag-
ging lines.These “chartists” have identified such supposedly repeating and therefore sta-
ble patterns as “double-bottoms,” “hanging man lines,” “the morning star,” “head and
shoulders,” and so on (Sornette, 2003). Although research has shown that “head and
shoulders” does, to some extent, surprisingly correlate with predictions of prices, this
correlation is hypothesized to be due to self-fulfilling prophecies on the part of investors
committed to investing when they see this pattern (see Osler & Chang, No date).Ablind
belief, however, in such purportedly repeating patterns in time series market charts is
pretty much the same as believing that the stars and galaxies that make celestial con-
stellations have a special relationship with each because they are part of these constel-
lations.

One of the most egregious examples, in my opinion, that demonstrates just how far time
series “chartists” can go in detecting patters is the “ElliottWave.” Proponents claim it
is present in most if not all capital market charts.

Figure 4: ElliottWaves in Stock Price Time Series Charts (ElliottWaves, No date).

At early conferences on chaos theory and NDS, ElliottWave aaficionados would show
up with their claims of finding “ElliottWaves” in scientific data frommany fields. How-
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ever, in the face of doubters who didn’t see the Elliott Waves where these acolytes
pointed, the latter would respond by saying that these obdurate doubters were not look-
ing at the time series charts in the right way. No doubt they were correct in that as-
sessment, because to see ElliottWaves everywhere one first needs to be a “true believer.”

Times series charts do play an important part in complexity science. One salient example
is the very sophisticated “discrete scale invariance” found in time series charts devised
by the complexity-based geophysicist Didier Sornette (2003). Sornette propounds a
mathematical approach to chart analysis that relies on elements of fractal geometry, the
theory of self-organized criticality, power law statistics and other complexity con-
structs. Although Sornette was able to “predict,” by hindsight, certain market crashes
inAsia, as well as by retrodiction, the crashes in the US in 1929 and 1987, his predictions
for a major capital market meltdown for 2003 or 2004 didn’t materialize until four years
later. One wonders if there isn’t a bit of the “a broken clock tells the correct time two
times per day.”

Phase Space, Phase Portraits, and Attractors
Instead of relying only on times series charts, dynamical systems researchers appeal to
a different mathematical representation of data points, the phase portrait displayed in
phase or state space (see Fogelberg, 1992) Rather than plotting changes in the values of vari-
ables on the y-axis (or z-axis), and time on the x-axis as in a time series chart, a phase
space diagram plots the variables against each other and leaves time as an implicit di-
mension not explicitly graphed.

The origins of the idea of phase space are a bit hazy, but it was a very important tool
used to simplify dynamics used in the mid-nineteenth century by the very influential
but not well-known American physicist J. Willard Gibbs.When the data is plotted in
phase space with points in phase space representing the value of each of the variables
at each moment of time, as the system changes over time, the data points make up a
trajectory that is called a phase portrait. Certain phase portraits then display attractor(s)
as the long-term stable sets of points of the dynamical system, that is, the locations in
the phase portrait towards which the system’s dynamics are attracted after transient phe-
nomena have died down. Since phase space and attractors are abstract mathematical ob-
jects, some concrete examples can help in understanding what’s going on.

Imagine a child on a swing (a type of pendulum) and a parent pulling the swing back and
giving it a good push but then backing away. Also, assume the child is not moving for-
ward or backward on the swing to influence its momentum (which would be going
against the main fun for being on a swing).What eventually happens to the “unpushed”
swing? It will come to rest. Here is a time series chart showing that eventuality.

The times series in Figure 1(b) shows an oscillation of the speed of the swing, which slows
down and eventually stops, that is, it “flat lines.” But we can also plot the same move-
ment of the “unpushed” swing in phase space to generate a phase portrait. In phase space,
the swing’s speed from the central resting spot is plotted, not against time, but against
the distance of the swing from the central resting place:
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Figure 5: (a) Drawing of an “Unpushed” Swing; (b) Time Series of the “Unpushed” Swing (y-axis is the
velocity of the swing, positive value in one direction, negative in the other; the x-axis is time)

(adapted from Bayly &Virgin, 1992).

Figure 6. Phase Portrait and Fixed PointAttractor of an “Unpushed” Swing
(adapted fromAbraham, 1982).

The phase portrait in Figure 6 shows curved lines with arrows spiraling in toward a cen-
tral point called a fixed point attractor since, it is attracting the system’s dynamics in
the long run. The fixed point attractor in the center of Figure 6 is equivalent to the flat
line in Figure 5 (b).

The point in the center of the phase space diagram is an attractor, more specifically, a
fixed point attractor, and an attractor since it represents the long term, stable pattern
of the dynamical system of the “unpushed” swing over time after the transient and di-
minishing back and forth motion has died down.As an attractor of the unpushed swing,
it displays what the dynamics of system are attracted to over the long run, as long as it
doesn’t receive any further pushes. The fixed point attractor is another way of seeing
and saying that an “unpushed” swing will come to a state of rest in the long term. Now
by itself, this may not seem particularly revealing. We need to wait for more complex
attractors for that.

The curved lines with arrows spiraling down to the center point in the phase space di-
agram of Figure 6 display what is called the basin of attraction for the “unpushed” swing.
These basins of attraction represent various initial conditions for the “unpushed” swing,
that is, the starting heights and initial velocities. The lines spiral in since the heights
of the swing and its speed slow down to zero when the dynamics reach the fixed point
attractor. Basins of attraction can be likened to an actual basin or bowl of a sink with
a drain at the bottom.The drain at the bottom of the sink is analogous to the fixed point
attractor in the center of the phase space diagram.Wherever water is poured into the
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bowl of a sink, high up in the sink, half-way down, or even lower still, and whatever the
initial condition of where the water is when it starts its downward spiral, the water will
be eventually be drawn or “attracted” to go down the drain.

Now let’s consider another type of a similar dynamical system, this time a “pushed” swing
in which the parent keeps pushing the swing each time it comes back to where the par-
ent is standing. A times series chart of the “pushed” swing, with time, as in the previ-
ous time series charts, represented on the x-axis and the distance of the swing from a
state of rest plotted as a value on the y-axis, is shown in Figure 7 as a continuing oscil-
lation around the x-axis. This oscillation is around a zero value for y (the low point of
the swing) and is positive when the swing is going in one direction and negative when
the swing is going in the other direction:

Figure 7: Time Series Chart of the “Pushed” Swing (a continuing oscillation around the x-axis —
adapted from Bayly &Virgin, 1992).

Now let’s convert this same scenario of the “pushed” swing to a phase diagram in phase
space as we did in the case of the “unpushed” swing. As a phase space diagram, we plot
the variables against each other, that is the speed of the swing and the distance from
the central resting point (again, time is an implicit dimension not directly plotted in phase
space).

Figure 8: Phase Space Diagram and Limit CycleAttractor of a “Pushed” Pendulum
(adapted fromAbraham, 1982).

The unbroken oval to which both the inner and outer lines with arrows point is a dif-
ferent kind of attractor from the fixed point one in Figure 6. This attractor is known
as a limit cycle or periodic attractor of a “pushed” swing. It is called a “limit cycle” because
it represents the cyclical behavior of the oscillations of the pushed swing as a “limit” to
which the systems adheres when under the sway of this attractor. It is “periodic” be-
cause the attractor oscillates around the same values, as the swing keeps going up and
down to the same heights from the lowest point. One can tell a dynamical system is
periodic if it has a repeating cycle or pattern.
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As before, the lines with the arrows indicate initial conditions in the basin of attraction
which are “attracted to” or drawn to the limit cycle attractor. Here is another limit cy-
cle attractor of the dynamical system known as the van der Pol electrical oscillator:

Figure 9: Limit CycleAttractor of the van der Pol Electrical oscillator
(adapted from Dynamical System, No date).

Because attractors are the stable pattern to which a dynamical system’s dynamics are at-
tracted, sometimes one hears the term being used in a causal sense, that is, that the at-
tractor is “causing” the system’s behavior. Some have even considered the idea of an at-
tractor as a type of final cause, or end or “telos” in terms of Aristotle’s four causes.
However, it doesn’t appear to make much sense to say that the attractors of Figures 6,
7, and 9 are causing the systems’ behavior. For example, does it make a lot of sense to
say the fixed point attractor of Figure 6 is causing the “unpushed” swing to come to a
state or rest? It seems more appropriate, instead, to consider the attractor as a de-
scription of the dynamics of the dynamical system. It is important to keep in mind that
phase portraits represent and do not cause the dynamics. Indeed, phase portraits and at-
tractors do reveal important information about the causal elements operative in a sys-
tem, for instance, that the variables are nonlinearly related to one another and so
forth. That is why a quantitative and qualitative study of the geometrical, topological,
and other properties of the attractors can yield deep insights into the system’s dynam-
ics.

To summarize what we have learned so far about attractors: they are spatially displayed
phase portraits of a dynamical system as it changes over the course of time; thus they
represent the long-term dynamics of the system so that whatever the initial conditions,
represented as data points and their trajectories in phase space that fall within its basins
of attraction, they are “attracted” to the attractor.

Yet, in his very insightful survey of the idea of an attractor, Robinson (2005) points out
that in spite of its wide usage in mathematics and science, there is still no precise def-
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inition of an attractor, although many have been offered. Robinson suggests that we
think about an attractor as a phase portrait that “attracts” a large set of initial condi-
tions (starting points of the system’s dynamics or behavior) and that has some sort of
minimality property. That means that it is the smallest such portrait in the phase space
of the system that has the property of attracting the initial conditions after any initial
transient behavior has died down.Theminimality requirement has the consequence that
the attractor is invariant or stable. It is the stable spatial pattern in phase space that pos-
sesses the property of capturing the evolution of the system over time. As a minimal
object, the attractor is also said to be indecomposable, that is, it cannot be split up into
smaller subsets and retain its role as what dominates a dynamical system during a par-
ticular phase of its evolution.

Chaos, Chaotic Attractors,
and Strange Attractors
What is gained by switching from time series charts to repre-
senting data using phase space diagrams and their portraits and
attractors may be not be great when we’re only talking about the
simple kind of dynamics seen above in the cases of the “un-
pushed” and “pushed” swings. But the real benefits of using at-
tractor reconstructions of data becomes apparent when the sys-
tem’s dynamics are more complex, often making it quite difficult
to recognize repeating or near repeating patterns in time series
charts. This is where the discovery of technically chaotic systems
became so important. Representing the data generated from
such systems led to the remarkable discovery that seemingly ran-
dom systems may in fact be deterministic yet posses random-ap-
pearing chaotic attractors.These chaotic systems only appear ran-
dom but are really constituted by a very complex type of stable
order, which, although not regular or repeating, nevertheless keeps the dynamical sys-
tem within certain ranges of possible behavior. Whereas the phase portrait of a truly
random system would eventually totally fill up the whole phase space diagram with a
big black blob since no region in phase space would be preferred over another, in chaotic
systems the phase portraits are very intricate structures delimiting the dynamics to only
circumscribed regions in their phase diagrams.

The late mathematical meteorologist Edward Lorenz (1993) uncovered this kind of be-
havior in research conducted during the early nineteen sixties using mathematical
models of the weather. Lorenz noticed that a seemingly insignificant difference in a
mathematical model he was using for forecasting the weather resulted in significantly
different forecasts. In effect, what Lorenz discovered was the phenomena of sensitive
dependence on initial conditions—the butterfly effect—in which a slight change in an
initial condition might lead to vast changes in outcomes. This was a phenomenon that
had been glimpsed more than a century ago by the great French mathematician Henri
Poincaré in his qualitative theory of differential equations, “qualitative” in the sense that
he found patterns among sets of the equations he was studying.Another eminent French
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mathematician, Jacques Hadamard, demonstrated something like sensitive dependence
on initial conditions in a quite different mathematical context (Rosser, 2009).

What Lorenz had discovered would later be known as chaos and its graphic display in
phase space as a chaotic attractor since it had the properties of being a-periodic, that
is the trajectory of the phase portrait never repeats (never crosses itself) and is sensi-
tively dependent on initial conditions (the “butterfly effect’). Robinson (2005) points
out that an attractor built out of Lorenz’s data was the first explicit example of an at-
tractor that was neither a fixed point nor some kind of periodic orbit. Here is a diagram
of a Lorenz attractor:

Figure10: LorenzAttractor (Ecometry, No date). The phase portrait plots such variables against each
other as the convective flow in the atmosphere and a vertical and a horizontal distribution of tempera-
ture. Please note that this should be visualized as three dimension since Lorenz had been employing three
variables in his models.

In Figure 10, although it appears that the trajectory in phase space crosses itself innu-
merable times, in actuality, the trajectory only passes arbitrarily close (remember it is
three dimensional so the trajectory only appears to cross itself but really fall in-between).
Today, in this context, we say that the Lorenz attractor has a fractal, that is a non-in-
teger dimensionality. This means that even though the phase portrait appears to be
merely a two-dimensional trajectory in phase space, this is simply an effect caused by
the “coarse” grained nature of the graphic display and our visual abilities. If we could
peer deeper and deeper into finer and finer scales of resolution, we would see that the
trajectory never actually crosses but instead gets arbitrarily close and then veers of. The
characteristic of getting arbitrarily close and then veering off is the spatial representa-
tion of the property of sensitive dependence on initial conditions.

After these early glimpses of chaotic behavior in dynamical systems, it took another
decade for such phenomena to be named “chaos” in a strict mathematical sense, dis-
tinguished from the usual randomness connotations of the word “chaos” (see Li &Yorke,
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1975; May, 1976). These were startling developments in mathematics since they demon-
strated that underlying what appeared to be random time series were actually deter-
ministic systems produced by lawful and not random operations.Moreover, there is some
measure of predictability in chaotic systems because of the way the attractors of the sys-
tem are constrained to particular regions of phase space. For example, if the weather is
modeled as a chaotic system, so that particular states of the
weather are unpredictable (for example, what temperature will it
be in NewYork City on September 11, 2015?), it nevertheless pre-
dictable that the temperature will fall within a range, say, be-
tween 72 and 95 degrees Fahrenheit. This predictability results
from how the climate per se can be interpreted as one of the fac-
tors that attracts the weather and thereby serves as a constraint on
the unpredictability of the states of the weather.

Strange Attractors
The term and idea of a “strange attractor” came about in re-
search by the mathematical physicists David Ruelle and FlorisTak-
ens (1971) into the phenomena of turbulence in viscous liquids, an
area long considered difficult for several reasons, not the least be-
ing the mostly intractable equations used to model fluid dynam-
ics. Ruelle andTakens came up with a mathematical means of mod-
eling turbulence, that is certain functions that when iterated led
to an attractor with strange properties, hence the name “strange
attractor.” One of these strange properties was that the attractor had what would later
be called a fractal structure since it was composed of the product of a Cantor set with
a two dimensional surface. This fractal Cantor ternary set, as seen in Figure 11, is cre-
ated by repeatedly deleting the open middle thirds of a set of line segments, each new
scale showing the same tripartite structure:

Figure 11: Fractal structure of a Cantor set (Cantor Set, No date).

Takens and Ruelle’s notion of a “strange attractor” was later applied to the attractors
of chaotic systems since it was generally thought that all chaotic attractors had a frac-
tal structure as well as possessing the property of sensitive dependence on initial con-
ditions (the butterfly effect from above). Thus “strange” and “chaotic” in relation to at-
tractors became synonymous.

However, to complicate matters a bit, still later it was discovered that there are not only
strange non-chaotic attractors that have a fractal structure but do not possess the prop-
erty of sensitive dependence on initial conditions. There are also non-strange chaotic
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attractors that don’t have a non-integer dimensionality, that is, they do not possess a frac-
tal structure (see, Grebogi, Ott, Pelikan &Yorke, 1984; and,Awrejcewicz, & Reinhardt,
1990).

To be sure, the idea that there could be fractal, non-integer dimensions was quite a rev-
olutionary idea and there’s no doubt that its progenitor, the late great mathematician
Benoit Mandelbrot (1982), has a significant place in mathematical immortality. Fractal
dimensioned strange attractors can be quite beautiful as Figure 12 exhibits:

Figure 12: Poisson SaturneAttractor (adapted fromAttractor, No date)
(color added to show more clearly the intricacy and beauty of the form).

The physicist Clint Sprott has a website (Sprott, No date) where new, beautiful fractals
and strange attractors are created daily. Sprott (2005) has also researched differences in
preferences between scientists and artist as to their appreciation of strange attractors.
Interestingly, scientists tend to prefer less complex strange attractors while artists
tend to prefer the more complex varieties.

Bifurcations
Dynamical systems undergo change in two different modes. The first we can call intra-
attractor change, since the changes are limited to what is circumscribed by the reign-
ing attractor(s). Intra-attractor change does not disrupt stability, demonstrated by the
fact that the system has a stable attractor(s). However a dynamical system can also un-
dergo a more radical type of change when the attractor(s) themselves change, an inter-
attractor change known as bifurcation. Bifurcation(s) result when certain parameters on
the dynamical equations, that is conditions affecting the system, reach critical thresh-
olds (seeMay, 1976).When bifurcations takes place, the phase portrait undergoes a qual-
itative shift to a new kind of spatial patterning, that is, what was previously describing
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the stability itself undergoes an instability resulting in new stable configurations in state
space.

There are different routes to the occurrence of bifurcation, one of them being the Ru-
elle-Takens scenario described above (see also Bifurcation Theory, No date) in which a
periodic attractor bifurcates into a torus (a donut like shape) and the torus into a strange
attractor.Another route to bifurcation is the period doubling one studied by the physi-
cist Mitchell Feigenbaum who discovered the constant that bears his
name (seeWilliams, 1997). In the latter scenario, the period of the at-
tractors keeps doubling until the attractors pass into a chaotic attractor.

Chaotic Attractors in
Heart Beat Interval Research
Below is an example of the usefulness of using the mathematical de-
vices of phase space and attractors in physiological research. Building
on the ground-breaking work of Ari Goldberger (see Goldberger,
1996) in studying the nonlinear dynamics of heart beat intervals, Os-
aka, et al. (2003) investigated the role of sympathetic nerve activity on
heart beat intervals by studying rats with normal or high blood pres-
sure (I guess the rat race really got to them!). These researchers, as-
suming “heartbeat intervals are determined by sympathetic nerve activity and blood pres-
sure in a complex interaction that involves the brainstem and feedback loops,” went on
to examine the details of the interaction for low-frequency oscillations. Figure 13 depicts
time series charts of their data:

Figure 13: Time Series of Heart Rate (H(t)), Renal Sympathetic NerveActivity (S(t)), and Blood Pres-
sure (B(t)) in Rats with Normal or High Blood Pressure (adapted from Osaka, et. al., 2003).

One thing noticeable by comparing these time series charts is the timing of extrema
(seen in the narrow vertical window), that is, troughs and valleys at same time in renal
sympathetic activity and blood pressure.
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Not content with relying on time series charts, the authors transposed their data into
phase diagrams whose phase portrait indicate the existence of low dimensional chaotic
attractors seen in Figures 14 and 15:

Figure 14:At the top: Phase Portrait of Renal Sympathetic NerveActivity against Delayed or Lagged
TimeVersion of Itself;At the bottom: Heart Rate Intervals PlottedAgainst Renal SympatheticActiv-

ity (adapted from Osaka, et. al., 2003).

Figure 15: Phase Portrait of Renal SympatheticActivity in Relation to Blood Pressure
(adapted from Osaka, et al., 2003).

Each of the phase portraits in Figures 14 and 15 indicate the presence of low dimensional
chaotic attractors. A “low dimensional” chaotic attractor is one where there is less vari-
ation, or, in other words, more correlation among the variables. This suggests that the
low-frequency blood pressure oscillations actually do arise from sympathetic nerve ac-
tivity and thus the researchers concluded that sympathetic nerve activity leads to
heartbeat interval and blood pressure changes. “This bolsters the view that sympathetic
nerve activity may play a causative role in hypertension” (p. 041915-3). This conclusion
illustrates how attractor (re)construction as a research tool can be used to probe pos-
sible causal mechanisms at work in the system, but that the attractor itself is not the
causative agent. It is from findings like these that certain diseases are now understood
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as “dynamical diseases” meaning that their temporal phasing can be a key to under-
standing pathological conditions.

Conclusion
One of the powerful appeals of the use of phase space, phase portraits, and attractor
reconstructions is their graphic vividness. This goes along with how changes over time
in a time series chart are transformed into spatial patterns in phase space, which are then
more accessible in many ways for gaining insight into the nonlinear dynamics of such
systems. It is no accident that the study of such complex systems has arisen at the same
time as the micro-processor, an invention that has heralded much of the mathematical
underpinnings of contemporary complexity theory.
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An Invitation...
Please share this story!  You are welcome to distribute this document
freely to your friends and colleagues.
 
Contact Lisa Kimball, President of Plexus to share your thoughts or
to become part of the exciting Plexus discourse. 
 
 

Lisa Kimball

888-466-4884 • lisa@plexusinstitute.org

           1025 Connecticut Ave NW, Suite 1000 

        Washington, DC  20015
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TheMission of Plexus Institute:

“Fostering the health of individuals, families, communities,
organizations and our natural environment by helping people use

concepts emerging from the new science of complexity.”
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